Bell-Kochen-Specker theorem for 20 vectors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27 L829
(http://iopscience.iop.org/0305-4470/27/21/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 22:57

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Bell-Kochen-Specker theorem for 20 vectors

Michael Kernaghan
University of Western Ontario, London, Canada

Received 31 August 1994

Abstract

An example of the Bell-Kochen-Specker argument is given for 20 rays in four dimensions.

The Bell-Kochen-Specker theorem offers a simple proof that quantum mechanics contradicts the claim that individual constituents of an ensemble have 'hidden values' [1,2]. The first explicit demonstration of the theorem [3] required 117 rays in \mathbb{R}^{3}, but this has been reduced to 31 rays in \mathbb{R}^{3} [4] and 24 in \mathbb{R}^{4} [5]. In this letter, we provide an ensemble of 20 elements which demonstrates the theorem. The proof is a refinement of that of Peres [5].

In \mathbb{R}^{4}, select 20 rays through the origin. Let each ray be named by a coordinate x, y, z, w, but treat opposite directions as picking out the same ray. The claim that each ray may be consistently associated with a 'hidden value' of either one or zero is refutable in quantum mechanics.

To demonstrate the refutation, we first assume an assignment of 'hidden values' to a specified set of rays. Then, by invoking a simple rule of quantum mechanics, we derive a contradiction. The simple rule, derived by Penrose [6], is that given four mutuallyorthogonal rays $1,2,3,4$ in \mathbb{R}^{4} (a four-clique), we may write $f(1)+f(2)+f(3)+f(4)=1$, where $f()$ has value one or zero. Table 1 demonstrates a set of 20 vectors with 11 fourcliques for which the set of associated equations cannot be satisfied. We note in table 1 that the sum of the left-hand side is odd, yet, since each vector contributes either one or zero an even number of times to the sum of the right-hand side, the equations are not simultaneously consistent.

Table 1. Inconsistent equations derived from mutually-orthogonal rays. Each ray occurs twice or four times.

```
\(1=f(1,0,0,0)+f(0,1,0,0)+f(0,0,1,0)+f(0,0,0,1)\)
\(1=f(1,0,0,0)+f(0,1,0,0)+f(0,0,1,1)+f(0,0,1,-1)\)
\(1=f(1,0,0,0)+f(0,0,1,0)+f(0,1,0,1)+f(0,1,0,-1)\)
\(1=f(1,0,0,0)+f(0,0,0,1)+f(0,1,1,0)+f(0,1,-1,0)\)
\(1=f(-1,1,1,1)+f(1,-1,1,1)+f(1,1,-1,1)+f(1,1,1,-1)\)
\(1=f(-1,1,1,1)+f(1,1,-1,1)+f(1,0,1,0)+f(0,1,0,-1)\)
\(1=f(1,-1,1,1)+f(1,1,-1,1)+f(0,1,1,0)+f(1,0,0,-1)\)
\(1=f(1,1,-1,1)+f(1,1,1,-1)+f(0,0,1,1)+f(1,-1,0,0)\)
\(1=f(0,1,-1,0)+f(1,0,0,-1)+f(1,1,1,1)+f(1,-1,-1,1)\)
\(1=f(0,0,1,-1)+f(1,-1,0,0)+f(1,1,1,1)+f(1,1,-1,-1)\)
\(1=f(1,0,1,0)+f(0,1,0,1)+f(1,1,-1,-1)+f(1,-1,-1,1)\)
```

There are 192 distinct sets of 11 equations derivable from subsets of Peres' 24 ray set [5]. However, none of the latter is a subset of Penrose's 'dodecahedron' [6].

I would like to extend my appreciation to Professor Asher Peres for important assistance with the simplification of the proof.

References

[1] Mermin D 1993 Rev. Mod. Phys. 65803
[2] Bell J S 1966 Rev. Mod. Phys. 38447
[3] Kochen S and Specker E P 1967 J. Math. Mech. 1759
[4] Kochen S and Conway J unpublished (cf [5] p 114)
[5] Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer) p 201
[6] Zimba J and Penrose R Studies in History and Philosophy of Modern Science 24697

