

Home Search Collections Journals About Contact us My IOPscience

Bell-Kochen-Specker theorem for 20 vectors

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys. A: Math. Gen. 27 L829

(http://iopscience.iop.org/0305-4470/27/21/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.68 The article was downloaded on 01/06/2010 at 22:57

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Bell–Kochen–Specker theorem for 20 vectors

Michael Kernaghan University of Western Ontario, London, Canada

Received 31 August 1994

Abstract. An example of the Bell-Kochen-Specker argument is given for 20 rays in four dimensions.

The Bell-Kochen-Specker theorem offers a simple proof that quantum mechanics contradicts the claim that individual constituents of an ensemble have 'hidden values' [1, 2]. The first explicit demonstration of the theorem [3] required 117 rays in \mathbb{R}^3 , but this has been reduced to 31 rays in \mathbb{R}^3 [4] and 24 in \mathbb{R}^4 [5]. In this letter, we provide an ensemble of 20 elements which demonstrates the theorem. The proof is a refinement of that of Peres [5].

In \mathbb{R}^4 , select 20 rays through the origin. Let each ray be named by a coordinate x, y, z, w, but treat opposite directions as picking out the same ray. The claim that each ray may be consistently associated with a 'hidden value' of either one or zero is refutable in quantum mechanics.

To demonstrate the refutation, we first assume an assignment of 'hidden values' to a specified set of rays. Then, by invoking a simple rule of quantum mechanics, we derive a contradiction. The simple rule, derived by Penrose [6], is that given four mutually-orthogonal rays 1, 2, 3, 4 in \mathbb{R}^4 (a four-clique), we may write f(1)+f(2)+f(3)+f(4)=1, where f() has value one or zero. Table 1 demonstrates a set of 20 vectors with 11 four-cliques for which the set of associated equations cannot be satisfied. We note in table 1 that the sum of the left-hand side is *odd*, yet, since each vector contributes either one or zero an *even* number of times to the sum of the right-hand side, the equations are not simultaneously consistent.

Table 1. Inconsistent equations derived from mutually-orthogonal rays. Each ray occurs twice or four times.

$$\begin{split} 1 &= f(1, 0, 0, 0) + f(0, 1, 0, 0) + f(0, 0, 1, 0) + f(0, 0, 0, 1) \\ 1 &= f(1, 0, 0, 0) + f(0, 1, 0, 0) + f(0, 0, 1, 1) + f(0, 0, 1, -1) \\ 1 &= f(1, 0, 0, 0) + f(0, 0, 1, 0) + f(0, 1, 0, 1) + f(0, 1, 0, -1) \\ 1 &= f(1, 0, 0, 0) + f(0, 0, 0, 1) + f(0, 1, 1, 0) + f(0, 1, -1, 0) \\ 1 &= f(-1, 1, 1, 1) + f(1, -1, 1, 1) + f(1, 1, -1, 1) + f(1, 1, 1, -1) \\ 1 &= f(-1, 1, 1, 1) + f(1, 1, -1, 1) + f(1, 0, 1, 0) + f(0, 1, 0, -1) \\ 1 &= f(1, -1, 1, 1) + f(1, 1, -1, 1) + f(0, 1, 1, 0) + f(1, 0, 0, -1) \\ 1 &= f(1, 1, -1, 1) + f(1, 1, -1, 1) + f(0, 0, 1, 1) + f(1, 0, 0, -1) \\ 1 &= f(1, 1, -1, 1) + f(1, 1, -1) + f(0, 0, 1, 1) + f(1, -1, -1, 0) \\ 1 &= f(0, 1, -1, 0) + f(1, 0, 0, -1) + f(1, 1, 1, 1) + f(1, -1, -1, 1) \\ 1 &= f(0, 0, 1, -1) + f(1, -1, 0, 0) + f(1, 1, 1, 1) + f(1, 1, -1, -1) \\ 1 &= f(1, 0, 1, 0) + f(0, 1, 0, 1) + f(1, 1, -1, -1) + f(1, -1, -1, 1) \end{split}$$

There are 192 distinct sets of 11 equations derivable from subsets of Peres' 24 ray set [5]. However, none of the latter is a subset of Penrose's 'dodecahedron' [6].

I would like to extend my appreciation to Professor Asher Peres for important assistance with the simplification of the proof.

References

ħ.

- [1] Mermin D 1993 Rev. Mod. Phys. 65 803
- [2] Bell J S 1966 Rev. Mod. Phys. 38 447
- [3] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
- [4] Kochen S and Conway J unpublished (cf [5] p 114)
- [5] Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer) p 201
- [6] Zimba J and Penrose R Studies in History and Philosophy of Modern Science 24 697